ARTICLE
ARTICLE
Using Models to Make Predictions
Using Models to Make Predictions
Students explore how solar radiation, Earth's surface and oceans, and greenhouse gases interact to cause global warming. They can change variables to determine how much greenhouse gas emissions might need to fall to mitigate the temperature increase.
Grades
7 - 12
Subjects
Earth Science, Climatology
Image
Development Climate Models
Development Climate Models.jpg
Skeptical Science image provided by Concord Consortium
Learning materials
This activity is part of a sequence of activities in the What Is the Future of Earth's Climate? lesson. The activities work best if used in sequence.
Preparation
Required Technology
- Internet access: Required
- Tech setup: 1 computer per classroom, 1 computer per learner, 1 computer per small group, Projector
Physical Space
- Classroom
- Computer lab
- Media Center/ Library
Grouping
- Heterogeneous grouping
- Homogeneous grouping
- Large-group instruction
- Small-group instruction
Objectives
Students will:
- explore the complex interrelationships between Earth's surface and oceans, greenhouse gases, and temperature
- analyze the validity of climate models for predicting future climate conditions
Teaching Approach
- Learning-for-use
Teaching Methods
- Discussions
- Multimedia instruction
- Visual instruction
- Writing
Skills Summary
- 21st Century Student Outcomes
- Information, Media, and Technology Skills
- Learning and Innovation Skills
- 21st Century Themes
- Critical Thinking Skills
- Analyzing
- Evaluating
- Understanding
Overview
Climate scientists use models to test their predictions about climate change. They test different scenarios by changing their inputs to the model and algorithms for how various factors interact with each other.
When scientists can accurately predict past climates with their inputs and algorithms, they can be more sure that their models will be able to correctly predict future climates. There are many different factors that can affect Earth's atmosphere and temperature, and scientists continually update their models to reflect as many of these interactions as they can.
Recommended Prior Activities
Directions
1. Activate students' prior knowledge about greenhouse gases and global warming.
Tell students they will be investigating how much greenhouse gas concentrations need to be reduced to prevent major warming of Earth's atmosphere. Review with students the interactions of greenhouse gases with radiation and temperature and Earth's surfaces and temperature. Ask:
- How do greenhouse gases cause atmospheric warming? (Greenhouse gases absorb outgoing infrared radiation and re-emit it, trapping the heat energy in the atmosphere.)
- How does the level of carbon dioxide in the atmosphere affect the level of water vapor in the atmosphere? (When there is more carbon dioxide in the atmosphere, there will be more water vapor in the atmosphere. Carbon dioxide increases temperatures, which leads to increased evaporation of water. This leads to more warming, and more carbon dioxide in the atmosphere as it is released from the oceans and more water vapor as more water evaporates. This is a positive feedback relationship.)
- How does the color of Earth's surfaces affect temperature? (When the surface is light-colored, solar radiation is reflected, leading to less heating. When the surface is dark-colored, solar radiation is absorbed, leading to more heating.)
- What is the relationship between water vapor and clouds? (When there is more water vapor, there are more clouds. The clouds can reflect solar radiation, leading to cooling, which can decrease the amount of water vapor in the air. This is a negative feedback relationship.)
2. Discuss the role of uncertainty in the scientific process.
Science is a process of learning how the world works and that scientists do not know the “right” answers when they start to investigate a question. Tell students they can see examples of scientists' uncertainty in climate forecasting.
Show the Global Temperature Change Graph from the 1995 IPCC (Intergovernmental Panel on Climate Change) report. Tell students that this graph shows several different models of forecast temperature changes. Ask: Why is there more variation (a wider spread) between the models at later dates than at closer dates? (There is more variation between the models at later dates than at closer dates because there is more variability in predicting the far future than in predicting the near future.)
Tell students that the ability to better predict near-term events occurs in hurricane and tropical storm forecasting as well. Project The Definition of the National Hurricane Center Track Forecast Cone and show students the “cone of uncertainty” around the track of the storm. Tell students that the cone shows the scientists' uncertainty in the track of the storm, just as the climate models show the scientists' uncertainty in how much Earth's temperature will change in the future.
Ask: When are scientists most confident in their predictions? (Scientists are most confident in their predictions when they have a lot of data. This is why the forecast for near-term events is better than forecasts of longer-term events, both in storm forecasting and in climate forecasting.)
Tell students they will be asked questions about the certainty of their predictions and that they will need to think about what scientific data are available as they assess their certainty with their answers. Encourage students to discuss the scientific evidence with each other to better assess their level of certainty with their predictions.
3. Discuss the role of systems in climate science.
Tell students that forecasting what will happen in Earth's climate system is a complicated process because there are many different interacting parts. Scientists think about how one part of the system can affect other parts of the system. Give students a simple example of a system, as described in the scenario below.
On an island, there is a population of foxes and a population of rabbits. The foxes prey on the rabbits. Ask:
- When there are a lot of rabbits, what will happen to the fox population? (It will increase because there is an ample food supply.)
- What happens to the fox population when they’ve eaten most of the rabbits? (The foxes will die of starvation as their food supply decreases.)
- What happens to the amount of grass when the fox population is high? (The amount of grass will increase because there are fewer rabbits to eat the grass.)
- If there is a drought and the grass doesn’t grow well, what will happen to the populations of foxes and rabbits? (The rabbit population will decrease because they have a lesser food supply. The fox population should also decrease as their food supply decreases.)
Humans introduce dogs to the island. The dogs compete with the foxes over the rabbit food supply. Ask: What will happen to the populations of foxes, rabbits, and grass after the dogs are introduced? (The foxes will decrease because they are sharing their food supply, the rabbits will decrease because they have more predators, and the grass will do well because of the lowered impact of the smaller rabbit population.)
Tell students that these simple cause-effect relationships can expand into more complex system relationships. Let students know they will be exploring cause-effect and system feedback relationships between carbon dioxide and water vapor in this activity. Ask students to think about how each piece of the system affects other pieces of the system.
4. Introduce and discuss the use of computational models.
Introduce the concept of computational models, and give students an example of a computational model that they may have seen, such as forecasting the weather. Project the NOAA Weather Forecast Model, which provides a good example of a computational model. Tell students that:
- scientists use information about the past to build their climate models.
- scientists test their climate models by using them to forecast past climates.
- when scientists can accurately forecast past climates, they can be more confident about using their models to predict future climates.
5. Have students launch the Using Models to Make Predictions interactive.
Provide students with the link to the Using Models to Make Predictions interactive. Divide students into groups of two or three, with two being the ideal grouping to allow students to share a computer workstation. Tell students they will be working through a series of pages of models with questions related to the models. Ask students to work through the activity in their groups, discussing and responding to questions as they go.
NOTE: You can access the Answer Key for students' questions—and save students' data for online grading—through a free registration on the High-Adventure Science portal page.
Tell students this is Activity 6 of the lesson What Is The Future of Earth's Climate?
6. Have students discuss what they learned in the activity.
After students have completed the activity, bring the groups back together and lead a discussion focusing on these questions:
- Are models necessary to understand climate change? (No. The basic cause of Earth's warming is understood without models, but the interactions are complex enough that models help in trying to fully understand all of the relationships between the components in Earth's climate system.)
- How can you tell that the results from a climate model are valid? (When a climate model can accurately predict past climates, you can have more confidence in its ability to predict future climates. If the inputs to the model are good enough to predict the past, they should be enough to give a good indication of the future.)
- In the Earth system model with human emissions slider (Model 8), how much of a decrease in greenhouse gas emissions was needed to keep the temperature from rising too much? (The model shows that a 50-75% decrease is necessary. There are many factors missing from this model though. It doesn't show the warming effect of clouds or ocean currents, which can affect global temperatures.)
Informal Assessment
1. Check students' comprehension by asking them the following questions:
- What is the relationship between greenhouse gas emissions and Earth's temperature?
- Why does the temperature not decrease immediately after greenhouse gas emissions decline?
- Why do scientists think the warming of the 20th century cannot be explained by natural variability?
2. Use the answer key to check students' answers on embedded assessments.
Connections to National Standards, Principles, and Practices
National Science Education Standards
- (5-8) Standard A-1: Abilities necessary to do scientific inquiry
- (5-8) Standard A-2: Understandings about scientific inquiry
- (5-8) Standard B-1: Properties and changes of properties in matter
- (5-8) Standard B-3: Transfer of energy
- (5-8) Standard E-1: Abilities of technological design
- (5-8) Standard E-2: Understandings about science and technology
- (5-8) Standard F-5: Science and technology in society
- (5-8) Standard G-1: Science as a human endeavor
- (5-8) Standard G-2: Nature of science
- (9-12) Standard A-1: Abilities necessary to do scientific inquiry
- (9-12) Standard A-2: Understandings about scientific inquiry
- (9-12) Standard B-2: Structure and properties of matter
- (9-12) Standard B-5: Conservation of energy and increase in disorder
- (9-12) Standard D-1: Energy in the earth system
- (9-12) Standard E-1: Abilities of technological design
- (9-12) Standard E-2: Understandings about science and technology
- (9-12) Standard G-1: Science as a human endeavor
- (9-12) Standard G-2: Nature of scientific knowledge
Common Core State Standards for English Language Arts & Literacy
- Reading Standards for Literacy in Science and Technical Subjects 6-12: Key Ideas and Details, RST.11-12.3
- Reading Standards for Literacy in Science and Technical Subjects 6-12: Key Ideas and Details, RST.6-8.3
- Reading Standards for Literacy in Science and Technical Subjects 6-12: Key Ideas and Details, RST.9-10.3
- Reading Standards for Literacy in Science and Technical Subjects 6-12: Key Ideas and Details, RST.11-12.1
- Reading Standards for Literacy in Science and Technical Subjects 6-12: Craft and Structure, RST.11-12.4
- Reading Standards for Literacy in Science and Technical Subjects 6-12: Craft and Structure, RST.6-8.4
- Reading Standards for Literacy in Science and Technical Subjects 6-12: Key Ideas and Details, RST.9-10.1
- Reading Standards for Literacy in Science and Technical Subjects 6-12: Craft and Structure, RST.9-10.4
- Reading Standards for Literacy in Science and Technical Subjects 6-12: Key Ideas and Details, RST.6-8.1
ISTE Standards for Students (ISTE Standards*S)
- Standard 3: Research and Information Fluency
- Standard 4: Critical Thinking, Problem Solving, and Decision Making
Next Generation Science Standards
- Crosscutting Concept 2: Cause and effect: Mechanism and prediction
- Crosscutting Concept 3: Scale, proportion, and quantity
- Crosscutting Concept 4: Systems and system models
- Crosscutting Concept 5: Energy and matter: Flows, cycles, and conservation
- Crosscutting Concept 7: Stability and change
- HS. Earth and Human Activity: HS-ESS3-5. Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.
- HS. Earth and Human Activity: HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
- HS. Earth's Systems: HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.
- HS. Earth's Systems: HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
- HS. Earth's Systems: HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
- MS. Earth and Human Activity: MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
- Science and Engineering Practice 1: Asking questions and defining problems
- Science and Engineering Practice 2: Developing and using models
- Science and Engineering Practice 3: Planning and carrying out investigations
- Science and Engineering Practice 4: Analyzing and interpreting data
- Science and Engineering Practice 6: Constructing explanations and designing solutions
- Science and Engineering Practice 7: Engaging in argument from evidence
- Science and Engineering Practice 8: Obtaining, evaluating, and communicating information.
Tips & Modifications
Teacher Tips
To save your students' data for grading online, register your class for free at the High-Adventure Science portal page.
Modifications
This activity may be used individually or in groups of two or three students. It may also be modified for a whole-class format. If using as a whole-class activity, use an LCD projector or interactive whiteboard to project the activity. Turn embedded questions into class discussions. Uncertainty items allow for classroom debates over the evidence.
Credits
Media Credits
The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.
Researchers
Writers
Editor
Copyeditors
Fact-checker
Expert Reviewer
other
Last Updated
August 29, 2024
User Permissions
For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.
Media
If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.
Text
Text on this page is printable and can be used according to our Terms of Service.
Interactives
Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.